
�PRD� RIKU Chatbot

[PRD] RIKU Chatbot 

TL;DR� RIKU is an AI chatbot that gives gamers convenient access to helpful 
information, statistics, maps, and guides about their favorite video games in Q&A 
format, allowing gamers to find answers to their in-game queries efficiently.

Executive Summary

RIKU� An AI�Powered Productivity Tool

Problem Statement

Gamers often struggle to find specific information in the vast sea of internet resources 
while playing. Switching between the game and various online resources such as blogs, 
wikis, and guides disrupts the gaming experience and is time-consuming. This issue is 
particularly pronounced in complex game genres like RPGs and MMOs, where players 
need detailed information to optimize their gameplay strategies, navigation, builds, class 
selection, boss preparation, and more.

Solution Overview

RIKU addresses this problem as a centralized AI-powered chatbot that pulls information 
from wikis and other reliable sources. It offers precise and quick answers to user queries 
(e.g., “where can I find item X?, what’s the hidden ability for class Y?”), thereby enhancing 
the gaming experience with reliable information at gamers' fingertips. By reducing the 
need to pause and search through fragmented sources, RIKU supports a smoother and 
more immersive gaming experience.

Overview
What problem are we solving? 
Core Problem: Gamers often face significant interruptions in their gaming experience due 
to the need to search for specific information online. Whether it’s looking up the location 



�PRD� RIKU Chatbot

of a crafting material or comparing weapon stats, players are forced to pause their game, 
disrupting their immersion and flow. The core problem is the inefficiency and disruption 
caused by having to search through various fragmented sources, especially in genres like 
RPGs and MMOs where detailed information is crucial for optimal gameplay

Solutions today: Current solutions involve fragmented, inconsistently formatted 
information spread across numerous sites and pages. This leads to a time-consuming and 
disruptive process that breaks the immersive gaming experience. 

This matters to our users because:
1. Emotional: It’s frustrating to have to pause their focus and engagement with the 

game to hunt for information, especially if it requires a repetitive, trial-and-error 
ridden process of switching between the game and various pages.

2. Functional: Searching for information can be extremely time-consuming, especially 
when players need to sift through multiple sources or pages to collect fragmented 
information.

Customer, research, and market signals indicating the problem:
1. Time and Effort Investment: Gamers dedicate many hours to understanding game 

mechanics and optimizing strategies, especially in competitive gaming and 
evolving metas. 

2. Growth in RPGs and MMOs: RPGs and MMOs are increasingly popular and 
data-intensive genres in which players require detailed information on quests, 
items, maps, and character builds.

3. Static Existing Options: Current gaming wikis and guides lack real-time, 
interactive capabilities. They are mostly static and do not provide personalized 
responses, leading to fragmented and inefficient information retrieval.

4. Community Knowledge: Many gamers rely on platforms like Reddit or Discord to 
share tips and strategies, but such information is inherently fragmented and 
inaccessible to many. 



�PRD� RIKU Chatbot

How might we tackle this problem?

Solution overview: Our solution is a web app featuring AI capabilities that allow gamers to ask questions 
about in-game information for their favorite video games. The AI analyzes data pulled from wikis, guides, 
and other resources, helping gamers find accurate in-game information quickly and efficiently. This tool 
addresses the need for a streamlined, interactive, and real-time solution for accessing game data.

List of Features we brainstormed:
- P0s

- Accept user questions: Allow users to input questions about specific game 
details (e.g., what a certain debuff does in Xenoblade).

- Collect game data for key titles: Collect and store information from 
pre-selected resources (e.g., Fandom wikis) for various games.

- RAG-capable AI� Integrate LLMs so that RIKU can answer user queries 
dynamically

- P1s
- Voice capabilities: Allow users to ask RIKU questions through voice 

conversation, further reducing disruption of gameplay by not needing to 
type or look away from the screen.

- Scrape entire game libraries for key platforms: Increase RIKU’s library of 
games by scraping a greater breadth and depth of video game information 
repositories

- Fine-tuned models: Fine-tune the AI models on video game data to 
improve performance and accuracy

- Recommendations: Provide strategies and build recommendations (e.g., 
class and equipment combinations) for the games, based on game 
performance data or expert inputs.

- Multilingual support: Provide support for multiple languages to cater to a 
global user base.

- P2s
- Spoilers: Ensure spoilers and sensitive story elements are not 

unintentionally revealed to the player.
- PC / Steam integration: Provide game-specific data directly from these 

platforms via a desktop app or in-game overlay.



�PRD� RIKU Chatbot

- Context-aware responses: Enhance AI to provide context-aware responses 
that understand the current game state or specific situations within the 
game.

What key benefits will we provide?
1. Efficiency: Streamlines the process of finding specific game information, reducing 

the time gamers spend searching through multiple sources.
2. Comprehensive and centralized: Aggregates and synthesizes information from 

multiple sources or pages, providing a centralized platform for game queries.

Approach
Who are we building for?

1. RPG and MMO Gamers: Players of complex, data-intensive games like Xenoblade 
Chronicles, Final Fantasy, and other popular RPGs and MMOs who require detailed 
information to optimize their gameplay.

2. Competitive Gamers: Players involved in competitive gaming who need quick and 
accurate information to maintain a competitive edge during gameplay.

What does success look like?
1. Adoption

a. Metric: Achieve 10,000 active users within the first six months of launch.
b. Feeling: Users find RIKU valuable, additive, and undisruptive for their 

gaming sessions, relying on it to enhance their gameplay.
2. Retention:

a. Metric: Maintain a monthly user retention rate of 75%.
b. Feeling: Users consistently use RIKU because it provides immediate value 

without disrupting their gaming flow.
3. Accuracy:

a. Metric: Metric: Achieve a response accuracy rate of at least 90% as rated 
by user feedback.

b. Feeling: Users trust the accuracy and quality of the information provided by 
RIKU.



�PRD� RIKU Chatbot

What are our non-goals?
1. Creating a comprehensive gaming wiki: We’ll focus on giving quick, reliable 

answers to specific user queries, not a comprehensive database of game data.
2. Full game integration: We are not aiming to integrate fully with every game’s 

internal mechanics but rather to provide an external, supportive tool that 
complements the gaming experience.

Paint the story?
- Alex is deeply engaged in playing Xenoblade Chronicles and often needs specific 

information about quests, items, and character builds. With RIKU, Alex can input 
questions and get precise answers without pausing the game, enhancing the 
overall gameplay experience.

- Jamie is in the middle of an intense MMO raid and needs quick information about a 
boss’s weaknesses and strategies. Using RIKU, Jamie can get real-time, accurate 
responses, ensuring the raid's success without disrupting the flow of the game.

Solution
What does a solution look like?

1. RIKU scrapes and collects game data: Scrape, parse, and organize information for 
select titles in a way that’s accessible for the AI.

2. User asks a question about a supported title: The user inputs a specific question 
about game details (e.g., "when does Metang evolve in Pokemon Ruby?”).

3. RIKU generates an answer: The AI model processes the user's question, matching 
it with the parsed data from the wiki to find the most relevant information via RAG.

4. User continues the conversation or continues on with their gameplay: Follow-up 
questions and more detailed responses available if needed.



�PRD� RIKU Chatbot

UI/UX
- Chat Window:

- �P0 Standalone Mode]: A separate web app that users can open alongside 
their game or on their phones.

- �P2 Overlay Mode]: An in-game overlay that allows users to interact with 
RIKU without leaving their game.

- Input Methods:
- �P0 Text Input]: A simple text box for users to type their questions. 
- �P1 Text Input]: Incorporate autocomplete suggestions to help users form 

their queries.
- �P1 Voice Input]: For hands-free interaction, include a microphone button to 

enable voice queries. Use speech-to-text technology to transcribe the 
queries.

- Response Display:
- �P0� Text Responses: Display concise, clear answers in the chat window. 

Highlight key information and use bullet points for readability.
- �P1� Visual Aids: Include images, maps, or charts when relevant (e.g., 

location maps, item stats).
- User Feedback:

- �P1� Error Reporting: Provide a simple way for users to report incorrect or 
unhelpful information.

- �P2� Rating System: Allow users to rate the helpfulness of responses to 
gather feedback and improve the AI.

Technical considerations
- To build our prototype…

- Data Sources: Prototype to leverage Fandom for specific game titles
- Future: Gamefaqs, IGN, and full Fandom wiki scrapes for wider set of 

game titles and franchises; support for custom inputs (e.g., Meta tier 
list for that month for game XYZ�

- Tools to do this: Beautiful Soup, WikiExtractor
- Architecture: Prototype to leverage ChatGPT + Langchain + Streamlit

- ChatGPT models for embeddings, summarization, query parsing, etc.



�PRD� RIKU Chatbot

- Future: Voice models. Fine-tuning to video game queries.
- LangChain to handle vector embeddings, conversational logic chains, 

and data access.
- Future: Cloud vector storage solutions like Pinecone for scale 

and deployment.
- Streamlit to simplify front-end and event-handling.

- Future: React app for greater interactivity and flexibility.

List of Prioritized Features

Priority Feature Requirement Considerations

P0
Scrape and Collect 
Game Data

Scrape, parse, and organize 
information for select titles

Use web scraping tools like Beautiful Soup; 
ensure data is structured and accessible for AI 
via RAG.

P0
Accept User 
Questions

Allow users to input questions 
about specific game details

Develop a front-end interface with a text input 
box; incorporate autocomplete suggestions for 
queries.

P0 Generate Answer
AI processes user questions to 
provide relevant answers

Integrate ChatGPT; fine-tune on game-specific 
datasets; ensure real-time response 
generation.

P0 Text Input Simple text box for user questions
Ensure user-friendly design; incorporate 
autocomplete suggestions for ease of use.

P0 Text Responses
Display concise, clear answers in 
the chat window

Highlight key information; use bullet points for 
readability.

P1 Voice Capabilities
Enable voice queries through a 
microphone button

Implement speech-to-text technology for 
transcribing queries; ensure hands-free 
interaction.

P1
Scrape Entire 
Libraries

Increase library of games by 
scraping more repositories

Expand scraping capabilities to cover a 
broader range of video game information 
sources.

P1
Learning-capable 
Bot Improve AI performance over time

Implement machine learning algorithms to 
enhance AI's ability to answer queries 
accurately.



�PRD� RIKU Chatbot

P1 Recommendations
Provide strategies and build 
recommendations

Base recommendations on game performance 
data or expert inputs; integrate AI for 
personalized advice.

P1 Visual Aids
Include images, maps, or charts 
when relevant

Develop a system to display visual aids 
alongside text responses; ensure clarity and 
relevance.

P1 Error Reporting
Allow users to report incorrect or 
unhelpful information

Create a simple feedback mechanism; ensure 
user feedback is processed to improve AI 
accuracy.

P2 Spoiler Prevention Ensure spoilers are not revealed

Implement algorithms to detect and avoid 
spoilers; allow users to set preferences for 
spoiler alerts.

P2 Multilingual Support
Provide support for multiple 
languages

Integrate language translation capabilities; 
ensure accurate responses across different 
languages.

P2
PC / Steam 
Integration

Provide game-specific data via 
desktop app or in-game overlay

Develop integration with platforms like Steam; 
create an in-game overlay for seamless 
interaction.

P2
Context-aware 
Responses

Enhance AI to understand the current 
game state

Develop AI capabilities to provide contextually 
relevant responses based on the game state.

P2 Rating System
Allow users to rate the helpfulness of 
responses

Implement a rating system to gather feedback; 
use data to improve AI performance and user 
satisfaction.

What is the acceptance criteria?
1. Accuracy: The scraping tool must accurately collect and parse data from Fandom 

wikis with an accuracy rate of at least 90%.
2. Responsiveness: The system must accept and process user questions within 5 

seconds of input.
3. Clarity: Answers must be clear, concise, and well-formatted, using bullet points 

where applicable, especially given proper nouns and non-standard English.


